Abstract

This study presents a new approach for optimal placement of synchronised phasor measurement units (PMUs) to ensure complete power system observability in the presence of non-synchronous conventional measurements and zero injections. Currently, financial or technical restrictions prohibit the deployment of PMUs on every bus, which in turn motivates their strategic placement across the power system. PMU allocation is optimised here based on measurement observability criteria for achieving solvability of the power system state estimation. Most of the previous work has proposed topological observability based methods for optimal PMU placement (OPP), which may not always ensure numerical observability required for successful execution of state estimation. The proposed OPP method finds out the minimum number and the optimal locations of PMUs required to make the power system numerically observable. The problem is formulated as a binary semi-definite programming (BSDP) model, with binary decision variables, minimising a linear objective function subject to linear matrix inequality observability constraints. The BSDP problem is solved using an outer approximation scheme based on binary integer linear programming. The developed method is conducted on IEEE standard test systems. A large-scale system with 3120 buses is also analysed to exhibit the applicability of proposed model to practical power system cases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.