Abstract

We model and apply a stochastic-simulation-based methodology to optimize the machine allocation of a flexible flow shop (FFS) dedicated to integrated circuit (IC) packaging. This contrasts with most previous research on non-deterministic FFS problems wherein stochastic simulation is mostly used to estimate throughput, cycle time, delay cost, or some other measure(s) in order to compare the performances of already-existing heuristic-based algorithms. The methodology applied in this research, called progressive simulation metamodeling for IC Packaging (IC-PSO), while rooted in the traditional metamodeling technique known as Response Surface Methodology (RSM), contrasts with RSM in that it is equipped with well-designed mechanisms to ensure an ever-increasing solution quality in an attempt to achieve the desirable optimality. The computational efficiency that IC-PSO affords IC packaging companies is demonstrated via a numerical study. Meanwhile, an empirical study based on real data was conducted to validate the viability of the proposed methodology in real settings.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.