Abstract

This paper focuses on the data-driven optimal attack strategy against state estimation in cyber-physical systems (CPSs). Different from the research on attack strategies of specific attack types, the proposed attack strategy addresses the optimal selection of attacked targets, which can combine with different attack types and produce greater threats to CPS. In particular, a causality analysis (CA) on the measurement data is first proposed to evaluate the significance of nodes (sensor groups) and help the implementation of the optimal node attack, since the system topology and parameters are not available to adversaries. On the one hand, a multivariate transfer entropy and several data preprocessing methods are employed to complete the CA between sensor groups qualitatively. On the other hand, three new indexes, e.g., driver degree, are defined to complete the CA quantitatively. Moreover, the theoretical basis for the proposed node attack is provided, in which the superiority of the node attack is proven from the view of observability. Finally, the case studies on the smart grid are illustrated to verify the superiority of the proposed attack strategy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.