Abstract

This paper proposes a probabilistic extension to flexible hybrid state estimation (FHSE) for cyber-physical systems (CPSs). The main goal of the algorithm is improvement of the system state tracking when realistic communications are taken into account, by optimizing information and communication technology (ICT) usage. These advancements result in: 1) coping with ICT outages and inevitable irregularities (delay, packet drop and bad measurements); 2) determining the optimized state estimation execution frequencies based on expected measurement refresh times. Additionally, information about CPSs is gathered from both the phasor measurement units (PMU) and SCADA-based measurements. This measurement transfer introduces two network observability types, which split the system into observable (White) and unobservable (Grey) areas, based on 1) deployed measuring instruments (MIs) and 2) received measurements. A two-step bad data detection (BDD) method is introduced for ICT irregularities and outages. The proposed algorithm benefits are shown on two IEEE test cases with time-varying load/generation: 14-bus and 300-bus.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call