Abstract

In this paper we identify optimal swimming strategies for drag-dominated swimmers with a passive elastic joint. We use resistive force theory to obtain the dynamics of the system. We then use frequency-domain analysis to relate the motion of the passive joint to the motion of the actuated joint. We couple this analysis with elements of the geometric framework introduced in our previous work aimed at identifying useful gaits for systems in drag-dominated environments to identify speed-maximizing and efficiency-maximizing gaits for drag-dominated swimmers with a passive elastic joint.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call