Abstract
Musculotendon actuators produce active and passive moments at the joints they span. Due to the existence of bi-articular muscles, the passive elastic joint moments are influenced by the angular positions of adjacent joints. To obtain quantitative information about this passive elastic coupling between lower limb joints, we examined the passive elastic joint properties of the hip, knee, and ankle joint of ten healthy subjects. Passive elastic joint moments were found to considerably depend on the adjacent joint angles. We present a simple mathematical model that describes these properties on the basis of a double-exponential expression. The model can be implemented in biomechanical models of the lower extremities, which are generally used for the simulation of multi-joint movements such as standing-up, walking, running, or jumping.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.