Abstract

Although climate change is a reality, many off-grid communities continue to use diesel generators for electricity supply. This document presents a strategy to reduce diesel consumption in an out-of-grid system formed by renewable sources (PV-HKT-WT-DG). Three energy dispatch strategies have been proposed to verify the impact on diesel consumption and generator operating hours. In addition, different energy storage technologies (acid lead, lithium-ion, vanadium redox flow, pump storage and supercapacitor) have been considered. The HOMER software has been used to calculate the optimal size of the systems through technical-economic indicators.
 The results show that it is possible to reduce diesel consumption progressively; however, the cost of energy increases. On the other hand, when using lithium-ion batteries under charge cycle control, the penetration of the diesel generator has been greatly reduced without affecting the cost of the system. Finally, sensitivity analyzes have shown that when demand increases, diesel consumption does not increase significantly by using redox vanadium flow batteries, whereas the diesel generator operating hours decrease significantly in all systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.