Abstract
Summary Redox flow batteries (RFBs) have garnered increasing attention for their potential to enable the widespread adoption of renewable electricity. However, a critical need associated with the continued development of this technology involves designing electrode-electrolyte interfaces that exhibit rapid, stable electron transfer kinetics. This targeted review outlines key challenges associated with measuring and enhancing the electron transfer kinetics of established and emerging flow battery active materials. We discuss several promising opportunities for advancing flow battery science and technology using the tools of applied electroanalysis and catalysis science. These challenges and opportunities are broadly relevant for future research directed at advancing the commercial adoption of RFBs for grid-scale energy storage.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have