Abstract
Background and objectives: Empirical antimicrobial prescription strategies have been proposed to counteract the selection of resistant pathogenic strains. The respective merits of such strategies have been debated. Rather than comparing a finite number of policies, we take an optimization approach and propose a solution to the problem of finding an empirical therapy policy in a health care facility that minimizes the cumulative infected patient-days over a given time horizon. Methods: We assume that the parameters of the model are known and that when the policy is implemented, all patients receive the same treatment at a given time. We model the emergence and spread of antimicrobial resistance at the population level with the stochastic version of a compartmental model. The model features two drugs and the possibility of double resistance. Our solution method is a rollout algorithm. Results: In our example, the optimal policy computed with this method allows to reduce the average cumulative infected patient-days over two years by 22% compared to the best standard therapy. Considering regularity constraints, we could derive a policy with a fixed period and a performance close to that of the optimal policy. The average cumulative infected patient-days over two years obtained with the optimal policy is 6% lower (significantly at the 95% threshold) than that obtained with the fixed period policy. Conclusion: Our results illustrate the performance of a highly flexible solution method that will contribute to the development of implementable empirical therapy policies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.