Abstract
Background and objectives. We present a heuristic solution method to the problem of choosing hospital-wide antimicrobial treatments that minimize the cumulative infected patient-days in the long run in a health care facility. Methods. Our solution method is a rollout algorithm. We rely on the stochastic version of a compartmental model to describe the spread of an infecting organism in the health care facility and the emergence and spread of resistance to two drugs. We assume that the parameters of the model are known. Treatments are chosen at the beginning of each period based on the count of patients with each health status, and on stochastic simulations of the future emergence and spread of antimicrobial resistance. The same treatment is then administered to all patients, including uninfected patients, during the period and cannot be adjusted until the next period. Results. In our simulations, our algorithm allows to reduce the average cumulative infected patient-days over two years by 47.0% compared to the best standard therapy, and by 32.2% compared to a similar heuristic algorithm not using surveillance data (significantly at the 95% threshold). Conclusion. Our heuristic solution method is simple yet flexible. We explain how it can be used either to perform online optimization, or to produce data for quantitative analysis. Its performance is illustrated using a relatively simple infectious disease transmission model, but it is compatible with more advanced epidemiological models.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.