Abstract
Recent investigations of discretization schemes for the efficient numerical solution of boundary value ordinary differential equations (BVODEs) have focused on a subclass of the well‐known implicit Runge–Kutta (RK) schemes, called mono‐implicit RK (MIRK) schemes, which have been employed in two software packages for the numerical solution of BVODEs, called TWPBVP and MIRKDC. The latter package also employs continuous MIRK (CMIRK) schemes to provide C 1 continuous approximate solutions. The particular schemes implemented in these codes come, in general, from multi‐parameter families and, in some cases, do not represent optimal choices from these families. In this paper, several optimization criteria are identified and applied in the derivation of optimal MIRK and CMIRK schemes for orders 1–6. In some cases the schemes obtained result from the analysis of existent multi‐parameter families; in other cases new families are derived from which specific optimal schemes are then obtained. New MIRK and CMIRK schemes are presented which are superior to those currently available. Numerical examples are provided to demonstrate the practical improvements that can be obtained by employing the optimal schemes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.