Abstract

In this paper, the advantages of a new resonant driver are verified thoroughly by the analytical analysis, simulation and experimental results. A new accurate analytical loss model of the power metal oxide semiconductor field effect transistor driven by a current-source resonant gate driver is developed. Closed-formed analytical equations are derived to investigate the switching characteristics due to the parasitic inductance. The modeling and simulation results prove that compared to a voltage driver, a current-source resonant driver significantly reduces the propagation impact of the common source inductance during the switching transition at high (>1 MHz) switching frequency, which leads to a significant reduction of the switching transition time and the switching loss. Based on the proposed loss model, a general method to optimize the new resonant driver is proposed and employed in the development of a 12 V synchronous buck voltage regulator (VR) prototype at 1 MHz switching frequency. The level-shift circuit and digital implementation of complex programmable logic device (CPLD) are also presented. The analytical modeling matches the simulation results and experimental results well. Through the optimal design, a significant efficiency improvement is achieved. At 1.5 V output, the resonant driver improves the VR efficiency from 82.7% using a conventional driver to 86.6% at 20 A, and from 76.9% using a conventional driver to 83.6% at 30 A. More importantly, compared with other state of the art VR approaches, the new resonant driver is promising from the standpoints of both performance and cost-effectiveness.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.