Abstract

Drum brakes have dominated the braking industry for many years due to their low cost and adequate operating performance. In this paper, the authors present the first example of studying the sensitivity analysis of a magnetorheological fluid (MRF) and a conventional frictional brake by using first order Tayler series expansion. Nondimensional analyses are carried out to generalize the analyses for every brake configuration. This paper seeks to step away from the complexity of the numerical models for these brakes. Taylor series expansion is used to examine the effects of perturbing dimensionless design parameters on the braking torque. In addition, Taguchi approach is applied for the brakes to study the contribution of the design parameters on the braking torque and to obtain the optimal design. It is shown in this paper that braking torque for magnetorheological fluid brake is dependent on seven dimensionless groups while the frictional brake is dependent upon only four dimensionless groups. Four groups of the MRF brake and two groups for the frictional brake dominate the physics of braking. The sensitivity analysis has identified the key parameters that must be adjusted in order to increase braking torque. Furthermore, Taguchi approach has showed the how the variations of input variables affect the variations of the output variable and stated the optimal levels of the design parameters that achieve the optimal design.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.