Abstract
This paper introduces a superstructure-based simultaneous optimum design and operation of seawater reverse osmosis (RO) system with boron removal under time-variant constraints. Three operational strategies are utilized to improve operability of the system under boron restrictions, including changing the activated number of pressure vessels, permeates split ratio, and pH values. Moreover, exergo-environmental and exergo-econoenvironmental analysis models are integrated. The economic efficiency, energy utilization, and environmental impact could be optimized in both design and operation phases. The effect of water tank area, membrane type, and boron concentration on water production are investigated with constant feed conditions. Choosing proper water tank volume and type of membrane could not only reduce cost but also better operation conditions, such as improving the efficiency of pumps and reducing feed pH of RO pass 2. When both the eco-costs/value ratio and emergy rate of product are added as a penalty, the annual operation cost (a reduction of 5.50 %), emergy rate (a reduction of 7.02 %) and eco-costs/value ratio (a reduction of 7.48 %) of the product could be reduced with only a small amount of water cost increment (about 2.66 %). Improving the efficiency of pumps would be an effective method to improve overall performance of the RO plant.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have