Abstract
Boron removal by reverse osmosis (RO) membranes has been improved through raised pH and its removal mechanism was suggested as either charge repulsion or size exclusion. In the present study, boron removal by different RO membranes at different salinities was investigated along with their respective zeta potentials. While the impact of salinity on zeta potential of RO membranes was similar, its impact on boron removal by brackish water reverse osmosis (BWRO) membranes was different from that by SWC4+ and ESPAB membranes. RO membranes used in this study showed negative zeta potential value at high pH. However, at pH 9 and with higher salinity, their zeta potentials shifted to positive values. Boron removal by BWRO membranes decreased with increasing salinity at pH 9. The shift of zeta potential towards positive values at higher salinity suggested that charge repulsion mechanism became less dominant. Boron removal by ESPAB and SWC4+ decreased initially when NaCl concentration was increased towards 2000 mg/L at pH 9. However, removal increased slowly when NaCl was beyond 2000 mg/L. This observation suggested that boron removal by these membranes at low salinity was partially contributed by charge repulsion mechanism. At higher salinity, size exclusion could be the dominant factor for boron removal by SWC4 and ESPAB.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.