Abstract
Contemporary distribution networks can be seen with diverse dispatchable and nondispatchable energy resources. The coordinated scheduling of these dispatchable resources, together with nondispatchable resources, can provide several technoeconomic and social benefits. Since battery energy storage systems (BESSs) and microturbine units (MT units) are capital-intensive, a thorough investigation of their coordinated scheduling under the economic criterion will be a challenging task while considering dynamic electricity prices and uncertainties of renewable power generation and load demand. This paper proposes a comprehensive methodological framework for optimal coordinated scheduling of BESSs with MT unit considering existing renewable energy resources and dynamic electricity prices to maximize the daily profit function of the utility by employing a recently explored modified African buffalo optimization algorithm. The key attributes of the proposed methodology are comprised of mean price-based adaptive scheduling embedded within a decision mechanism system (DMS) to maximize arbitrage benefits. DMS keeps track of system states as a priori, thus resulting in an artificial intelligence-based solution technique for sequential optimization. Further, a novel concept of fictitious charges is also proposed to restrict the counterproductive operational management of BESSs. The proposed model and method are demonstrated on the 33-bus distribution system, and the obtained results verify the effectiveness of the proposed methodology.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have