Abstract
In this study, a semi-active suspension based on a hydro-pneumatic mechanism was designed to minimize the ride vibration using a suspension control algorithm. The performance of the algorithm was critical for controlling the characteristics of the target tractor. A linear-quadratic-Gaussian (LQG) optimal control algorithm was designed as a semi-active suspension control algorithm. The plant model for developing this algorithm was based on the parameters of an actual tractor. The rear suspension deflection was represented by a Kalman-filter-based state observer feedback to estimate the state variables that were difficult to measure. The designed state observer of the LQG controller was validated in terms of an accuracy index. The estimated vertical velocity and acceleration accuracies of the cabin were 83% and 79%, respectively. The performance of the designed controller was validated in terms of a performance index by comparing the performance of a tractor equipped with a rear rubber mount with that of one equipped with a semi-active suspension. The peak and root-mean-square values of the vertical acceleration of the cabin were reduced by up to 48.97% and 47.06%, respectively. This study could serve as a basis for the application of the control algorithm to systems with similar characteristics, thereby reducing system costs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.