Abstract
AbstractHydrogen energy storage plays an important role in improving the operation efficiency and reliability of power systems with high wind energy penetration. Hydrogen to power (HtP) system is the key link of hydrogen applications. However, the single HtP equipment is limited in power output range and efficiency. Hybrid HtP system is an important scheme to realize the performance complementary. A wider power output range can enrich the application scenarios of hydrogen energy storage and provide flexible and reliable energy scheduling in larger and more complex energy systems. In this study, first, a power system including traditional units, wind power generation and hybrid HtP system is established. Second, a bi‐layer hybrid HtP system optimal configuration model considering planning and operation is constructed. Then, a bi‐layer optimal configuration method based on the improved PSO algorithm is proposed. Finally, the optimization model and its solution method are applied to IEEE RTS‐96. The discussions based on the optimization results show that the hybrid HtP system has significant contributions in optimizing the output cost of traditional units, improving the utilization of wind energy, and reducing load shedding losses.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.