Abstract

We study a fundamental problem in Computational Geometry, the planar two-center problem. In this problem, the input is a set $S$ of $n$ points in the plane and the goal is to find two smallest congruent disks whose union contains all points of $S$. A longstanding open problem has been to obtain an $O(n\log n)$-time algorithm for planar two-center, matching the $\Omega(n\log n)$ lower bound given by Eppstein [SODA'97]. Towards this, researchers have made a lot of efforts over decades. The previous best algorithm, given by Wang [SoCG'20], solves the problem in $O(n\log^2 n)$ time. In this paper, we present an $O(n\log n)$-time (deterministic) algorithm for planar two-center, which completely resolves this open problem.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.