Abstract

Optofluidic devices have emerged as a promising label-free method for sensitive detection of biological molecules. Its advantages of rapid analysis, high specificity, and low interactions with samples have made it a popular device for biological and chemical analyses. This mini review describes state-of-the-art optofluidic devices based on optical resonators for biosensing. Advanced optical resonator geometries such as microspheres, microrings, and their integration with fluidics have been described. It is predicted that to meet demands of disease diagnostics for multiple clinically relevant samples, sizes of optical resonators will shrink further and geometries that enable multiplexing and integration with signal processing will be the trend of the future.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.