Abstract

Column miniaturization of liquid chromatography is a major trend in separation sciences with the advent of single-cell proteomics and metabolomics. Nanochannel chromatography is one of the promising tools for single-cell analyses because it provides ultra-small sample volume and high separation efficiency. However, non-fluorescent molecular detection in such small channels is still quite difficult due to fL–aL sample volume, which hinders further miniaturization of nanochannels. In this study, we overcame the size limitation of nanochannel chromatography by our label-free molecular detection method: photothermal optical diffraction (POD), which utilizes the photothermal effect of analytes and optical diffraction by nanochannel. The combination of the nanochannel chromatography and the POD enables 1.8 fL sample separation and label-free molecule detection in nanochannels with 800 nm width and 300 nm depth at the optimized experimental conditions. The limit of detection is 5.4 zmol (3300 molecules), approximately 50 times lower than the conventional label-free detection method. Furthermore, the theoretical plate number is calculated to be 105 plates/m, and the separation performance is discussed. Our label-free detection method will be widely used as a universal detector for nanochannel chromatography.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call