Abstract

Applications of the orbital angular momentum (OAM) of light range from the next generation of optical communication systems to optical imaging and optical manipulation of particles. Here we propose a micron-sized semiconductor source that emits light with predefined OAM pairs. This source is based on a polaritonic quantum fluid. We show how in this system modulational instabilities can be controlled and harnessed for the spontaneous formation of OAM pairs not present in the pump laser source. Once created, the OAM states exhibit exotic flow patterns in the quantum fluid, characterized by generation-annihilation pairs. These can only occur in open systems, not in equilibrium condensates, in contrast to well-established vortex-antivortex pairs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.