Abstract
Using optical spectroscopy with diffraction limited spatial resolution, the possibility of measuring the luminescence from single impurity centers in a semiconductor is demonstrated. Selectively studying individual centers that are formed by two neighboring nitrogen atoms in GaAs makes it possible to unveil their otherwise concealed polarization anisotropy, analyze their selection rules, identify their particular configuration, map their spatial distribution, and demonstrate the presence of a diversity of local environments. Circumventing the limitation imposed by ensemble averaging and the ability to discriminate the individual electronic responses from discrete emitters provides an unprecedented perspective on the nanoscience of impurities.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.