Abstract

Mg codoping can improve the luminescence properties of Eu-doped GaN. However, the enhanced optical sites differ depending on the fabrication method. In this study, the optical sites in Eu- and Mg-codoped GaN [GaN:(Eu, Mg)] grown by NH3-source molecular beam epitaxy (MBE) were evaluated. The optical properties of an Eu–Mg-related site grown by NH3-MBE were highly stable against thermal annealing. Although the luminescence at sites A (622.3 and 633.8 nm) and B (621.9 and 622.8 nm) was dominant under indirect excitation of Eu ions through GaN, four different optical site groups in addition to sites A and B were observed under resonant excitation. These optical sites are inconsistent with the Eu–Mg-related sites reportedly observed in GaN:(Eu, Mg) fabricated by organometallic vapor phase epitaxy, indicating that the optical site constitution strongly depends on the growth method. Furthermore, site A, with a high cross section, contributed to as much as 22% of the total photoluminescence (PL) integrated intensity for GaN:(Eu, Mg) grown by NH3-MBE, which resulted in a high PL intensity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call