Abstract

The semiconductor microcavity with a thin oxide-aperture layer is fabricated, and linear optical transmission spectrum measured for various aperture diameters. First, the observation of bare cavity modes is demonstrated in this microstructure which is capable of confining light field three-dimensionally. Several transverse modes are observed as transmission peaks, which manifests the lateral field confinement achieved well down to 2 μm aperture diameter. And the transmission spectrum of cavity modes coupled to the excitonic resonance is measured for the same microcavity system containing a single quantum well. The result shows that each transverse mode couples to an exciton independently as it approaches the excitonic resonance frequency, giving rise to an anti-crossing behavior between coupled modes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.