Abstract
By employing the surface and bulk micro-electro-mechanical system (MEMS) techniques, we design and demonstrate a simple and miniature optical Fabry-Perot interferometric pressure sensor, where the loaded pressure is gauged by measuring the spectrum shift of the reflected optical signal. From the simulation results based on a multiple cavities interference model, we find that the response range and sensitivity of this pressure sensor can be simply altered by adjusting the size of sensing area. The experimental results show that high linear response in the range of 0.2-1.0 Mpa and a reasonable sensitivity of 10.07 nm/MPa (spectrum shift/pressure) have been obtained for this sensor.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.