Abstract
Controlling the charge density in low-dimensional materials with an electrostatic potential is a powerful tool to explore and influence their electronic and optical properties. Conventional solid gates impose strict geometrical constraints to the devices and often absorb electromagnetic radiation in the infrared (IR) region. A powerful alternative is ionic liquid (IL) gating. This technique only needs a metallic electrode in contact with the IL, and the highest achievable electric field is limited by the electrochemical interactions of the IL with the environment. Despite the excellent gating properties, a large number of ILs are hardly exploitable for optical experiments in the mid-IR region because they typically suffer from low optical transparency and degradation in ambient conditions. Here, we report the realization of two electrolytes based on bromide ILs dissolved in polymethyl methacrylate (PMMA). We demonstrate that such electrolytes in the form of thin films can induce state-of-the-art charge densities as high as 20×1015 cm−2 with an electrochemical window of [−1V, 1V] in vacuum. Thanks to the low water absorption of PMMA, they work both in vacuum and in ambient atmosphere after a simple vacuum curing. Furthermore, our electrolytes can be spin-coated into flat thin films with optical transparency in the range from 600 to 4000 cm–1. Thanks to these properties, these electrolytes are excellent candidates to fill the gap as versatile gating layers for electronic and mid-IR optoelectronic devices.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.