Abstract

We report on a lithium niobate photonic crystal (PC) superprism device designed for double demultiplexer applications. In fact, the strong angular beam steering cannot only be reached by passively tuning the wavelength but it can also be actively controlled by the Pockels effect enhanced due to the slow light phenomenon. The performance of the passive device is demonstrated by measuring its transmission properties. Optical far field and near-field experiments, corroborated by two-dimensional finite difference time domain (2D-FDTD) calculations, exhibit an angular dispersion of 1.5°/nm. A value as high as 4.3°/nm is expected by improving the PC design as supported by 2D-FDTD simulation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.