Abstract

The polarization properties of light diffracted from single-skinned fibers of skeletal muscles have been examined under conditions in which the bathing solution pH and the ionic strength are changed. For fibers in the relaxed state, we observe large decreases in both the total depolarization signal, r, and the total diffraction birefringence signal, delta nT, upon pH change from 7.0 to 8.0 at normal ionic strength. However, if the ionic strength is raised, then the r-value change as the pH changes from pH 7.0 to pH 8.0 is much smaller. If the rigor state is achieved at pH 8.0, and 0 mM ATP under either of the ionic strength conditions, the fiber can still be stretched. Rigor stiffness for this state is only approximately 20% that of the value of the stiffness at pH 7.0 rigor. Electron micrographs obtained under this pH 8.0 rigor state show that the overlap region can be decreased upon stretching the fiber, signifying a different kind of weaker-binding rigor state. Optically, the weaker-binding rigor state has a lower depolarization signal and larger form birefringence than the strong-binding rigor state. To convert from one type of rigor state (pH 7.0) to the other rigor state (pH 8.0), or vice versa, the fiber must first be relaxed. Apparently, either of the rigor states can block the full impact of the pH effect.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.