Abstract
We elucidate the mechanism underpinning a recently discovered phenomenon in which cells respond to MHz-order mechanostimuli. Deformations induced along the plasma membrane under these external mechanical cues are observed to decrease the membrane tension, which, in turn, drives transient and reversible remodeling of its lipid structure. In particular, the increase and consequent coalescence of ordered lipid microdomains leads to closer proximity to mechanosensitive ion channels—Piezo1, in particular—that, due to crowding, results in their activation to mobilize influx of calcium (Ca2+) ions into the cell. It is the modulation of this second messenger that is responsible for the downstream signaling and cell fates that ensue. In addition, we show that such spatiotemporal control over the membrane microdomains in cells—without necessitating biochemical factors—facilitates aggregation and association of intrinsically disordered tau proteins in neuroblastoma cells, and their transformation to pathological conditions implicated in neurodegenerative diseases, thereby paving the way for the development of therapeutic intervention strategies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.