Abstract

Hafnium oxide (HfO 2) has attracted much interest as high- k material of choice for gate oxide replacement in future CMOS technologies and for its use in optical coating technology. The determination of optical properties, like refractive index and bandgap, is focus of intense research, since the optical constants of HfO 2 depend on the physical microstructure and the deposition methods and conditions. In the present study optical characterization of very thin HfO 2 films deposited by plasma ion assisted deposition and annealed at different temperatures is carried out. The characterization is performed using ellipsometric measurements in the spectral range from 1.5 to 8 eV and by using the Tauc–Lorentz and Cody–Lorentz dispersion models. In addition, direct inversion of the ellipsometric data is also carried out. The combination of the Cody–Lorentz model with Urbach tail results in the best description of the data and enables to determine meaningful parameters. On the other hand, the direct data inversion is shown to be useful to provide additional information like the presence of subgap absorption peaks and points out features associated to the crystallinity of the material.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.