Abstract

A network model of optic flow processing, based on physiological and anatomical features of motion-processing neurons, is used to investigate the role of small-field motion detectors emulating T5 cells in producing optic flow selective properties in wide-field collator neurons. The imposition of different connectivities can mimic variations observed in comparative studies of lobula plate architecture across the Diptera. The results identify two features that are crucial for optic flow selectivity: the broadness of the spatial patterns of synaptic connections from motion detectors to collators, and the relative contributions of excitatory and inhibitory synaptic outputs. If these two aspects of the innervation matrix are balanced appropriately, the network's sensitivity to perturbations in physiological properties of the small-field motion detectors is dramatically reduced, suggesting that sensory systems can evolve robust mechanisms that do not rely upon precise control of network parameters. These results also suggest that alternative lobula plate architectures observed in insects are consistent in allowing optic flow selective properties in wide-field neurons. The implications for the evolution of optic flow selective neurons are discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.