Abstract

Many insects perform high-speed aerial maneuvers in which they navigate through visually complex surrounds. Among insects, hoverflies stand out, with males switching from stationary hovering to high-speed pursuit at extreme angular velocities [1]. In dipterans, 50-60 large interneurons -- the lobula-plate tangential cells (LPTCs) -- detect changes in optic flow experienced during flight [2-5]. It has been predicted that large LPTC receptive fields are a requirement of accurate "matched filters" of optic flow [6]. Whereas many fly taxa have three horizontal system (HS) LPTC neurons in each hemisphere, hoverflies have four [7], possibly reflecting the more sophisticated flight behavior. We here show that the most dorsal hoverfly neuron (HS north [HSN]) is sexually dimorphic, with the male receptive field substantially smaller than in females or in either sex of blowflies. The (hoverfly-specific) HSN equatorial (HSNE) is, however, sexually isomorphic. Using complex optic flow, we show that HSN, despite its smaller receptive field, codes yaw velocity as well as HSNE. Responses to a target moving against a plain or textured background suggest that the male HSN could potentially play a role in target pursuit under some conditions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.