Abstract

We used isolated but functionally intact preparations of the lyriform slit-sense organ VS-3 from the leg of the spider, Cupiennius salei Keys, to examine the role of prominent fine-structural elements for mechanosensory transduction and adaptation. Slit sensilla act as strain sensors in the cuticular exoskeleton; each slit is innervated by two mechanosensitive neurons. Punctate mechanical deformation at four points along the dendrites demonstrated that mechanical excitability is confined to membrane sites at the extreme dendrite tips that are enclosed by cuticular slit structures. Depletion of microtubules in VS-3 neurons by prolonged mechanical stimulation and application of 5 mmol l(-1) colchicine did not disrupt the generation of a receptor potential. Hence, putative gating mechanisms of the mechanically activated membrane channels at the dendrite tips appear to be largely independent of microtubular structures. The discrete adaptation pattern in each of the two partner neurons, rapidly adapting versus slowly adapting, did not depend on the distinct mode of dendrite attachment to cuticular slit structures, and even persisted in isolated neurons after their dendrite tips and auxiliary structures were lost. We suggest that the two discrete adaptation patterns are based on intrinsic differences in the action potential encoding process rather than differences in stimulus transformation or mechanotransduction.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call