Abstract

In this work, we address operator learning for stochastic homogenization in nonlinear elasticity. A Fourier neural operator is employed to learn the map between the input field describing the material at fine scale and the deformation map. We propose a variationally-consistent loss function that does not involve solution field data. The methodology is tested on materials described either by piecewise constant fields at microscale, or by random fields at mesoscale. High prediction accuracy is obtained for both the solution field and the homogenized response. We show, in particular, that the accuracy achieved with the proposed strategy is comparable to that obtained with the conventional data-driven training method.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call