Abstract

In this paper, orthogonal polynomials series are used to approximate the time functions associated to the signatures. The coefficients in these series expansions, computed resorting to least squares estimation techniques, are then used as features to model the signatures. Different combinations of several time functions (pen coordinates, incremental variation of pen coordinates and pen pressure), related to the signing process, are analyzed in this paper for two different signature styles, namely, Western signatures and Chinese signatures of a publicly available Signature Database. Two state-of-the-art classification methods, namely, Support Vector Machines and Random Forests are used in the verification experiments. The proposed online signature verification system delivers error rates comparable to results reported over the same signature datasets in a previous signature verification competition.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.