Abstract
In this paper, feature combinations associated with the most commonly used time functions related to the signing process are analyzed, in order to provide some insight on their actual discriminative power for online signature verification. A consistency factor is defined to quantify the discriminative power of these different feature combinations. A fixed-length representation of the time functions associated with the signatures, based on Legendre polynomials series expansions, is proposed. The expansion coefficients in these series are used as features to model the signatures. Two different signature styles, namely, Western and Chinese, from a publicly available Signature Database are considered to evaluate the performance of the verification system. Two state-of-the-art classifiers, namely, Support Vector Machines and Random Forests are used in the verification experiments. Error rates comparable to the ones reported over the same signature datasets in a recent Signature Verification Competition, show the potential of the proposed approach. The experimental results, also show that there is a good correlation between the consistency factor and the verification errors, suggesting that consistency values could be used to select the optimal feature combination.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.