Abstract
In this paper, the specific trait of Persian signatures is applied to signature verification. Efficient features, which can discriminate among Persian signatures, are investigated in this approach. Persian signatures, in comparison with other languages signatures, have more curvature and end in a specific style. Usually, Persian signatures have special characteristic, in terms of speed, acceleration and pen pressure, during drawing curves. An experiment has been designed to determine the function indicating the most robust features of Persian signatures. Results obtained from this experiment are then used in feature extraction stage. To improve the performance of verification a combination of shape based and dynamic extracted features is applied to Persian signatures verification. To classify the signatures, Support Vector Machine (SVM) is applied. The proposed method is examined on two common Persian datasets, the new proposed Persian dataset in this paper (Noshirvani Dynamic Signature Dataset) and an international dataset (SVC2004). For three Persian datasets EER value are equal to 3, 3.93, 4.79, while for SVC2004 the EER value is 4.43.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.