Abstract

In this paper, calibration modeling of a low-cost Inertial Measurement Unit (IMU) sensor for Small Unmanned Aerial Vehicle (SUAV) attitude estimation is considered. First, an Allan variance analysis method is used to determine stochastic noise model parameters for each sensor of a Micro-Electro-Mechanical-System (MEMS) IMU. Next, these models are included in a Global Positioning System/Inertial Navigation System (GPS/INS) sensor fusion algorithm for on-line calibration. In addition, an off-line magnetometer calibration is considered that uses a set of GPS/INS sensor fusion attitude estimates to derive a calibration model. This off-line magnetometer calibration model is then augmented on-line with sensor fusion estimates of the residual sensor biases. Finally, using the calibrated magnetometers, attitude estimation is considered that uses only a low-cost IMU with magnetometers. Each sensor fusion algorithm is formulated using an Unscented Kalman Filter (UKF). For performance validation, attitude estimates are calculated with data collected on-board a SUAV and are compared with high-quality vertical gyroscope measurements.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.