Abstract

Attitude estimation using Global Positioning System/Inertial Navigation System (GPS/INS) was used as an example application to study three different methods of fusing redundant multi-sensor data used in the prediction stage of a nonlinear recursive filter. Experimental flight data were collected with an Unmanned Aerial Vehicle (UAV) containing GPS position and velocity calculations and four redundant Inertial Measurement Unit (IMU) sensors. Additionally, the aircraft roll and pitch angles were measured directly with a high-quality mechanical vertical gyroscope to be used as a ‘truth’ reference for evaluating attitude estimation performance. A simple formulation of GPS/INS sensor fusion using an Extended Kalman Filter (EKF) was used to calculate the results for this study. Each of the three presented fusion methods was shown to be effective in reducing the roll and pitch errors as compared to corresponding results using single IMU GPS/INS sensor fusion. Additionally, the fusion methods were shown to be effective in estimating roll and pitch angles without the aid of GPS (dead reckoning).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.