Abstract
In the online minimum spanning tree problem, a graph is revealed vertex by vertex; together with every vertex, all edges to vertices that are already known are given, and an online algorithm must irrevocably choose a subset of them as a part of its solution. The advice complexity of an online problem is a means to quantify the information that needs to be extracted from the input to achieve good results. For a graph of size n, we show an asymptotically tight bound of $$\varTheta n\log n$$ on the number of advice bits to produce an optimal solution for any given graph. For particular graph classes, e.g., with bounded degree or a restricted edge weight function, we prove that the upper bound can be drastically reduced; e.g., $$5n-1$$ advice bits allow to compute an optimal result if the weight function is the Euclidean distance; if the graph is complete, even a logarithmic number suffices. Some of these results make use of the optimality of Kruskal's algorithm for the offline setting. We also study the trade-off between the number of advice bits and the achievable competitive ratio. To this end, we perform a reduction from another online problem to obtain a linear lower bound on the advice complexity for any near-optimal solution. Using our results from the advice complexity finally allows us to give a lower bound on the expected competitive ratio of any randomized online algorithm fori?źthei?źproblem.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have