Abstract
AbstractIn this paper, we investigate to what extent the solution quality of online algorithms can be improved by allowing the algorithm to extract a given amount of information about the input. We consider the recently introduced notion of advice complexity where the algorithm, in addition to being fed the requests one by one, has access to a tape of advice bits that were computed by some oracle function from the complete input. The advice complexity is the number of advice bits read. We introduce an improved model of advice complexity and investigate the connections of advice complexity to the competitive ratio of both deterministic and randomized online algorithms using the paging problem, job shop scheduling, and the routing problem on a line as sample problems. We provide both upper and lower bounds on the advice complexity of all three problems.Our results for all of these problems show that very small advice (only three bits in the case of paging) already suffices to significantly improve over the best deterministic algorithm. Moreover, to achieve the same competitive ratio as any randomized online algorithm, a logarithmic number of advice bits is sufficient. On the other hand, to obtain optimality, much larger advice is necessary.KeywordsCompetitive RatioOnline AlgorithmPage FaultOnline ProblemRandom TapeThese keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.