Abstract

Molybdenum diselenide (MoSe2) have attracted much attention as an anode material for lithium/sodium ion batteries due to its specific layered structure. Here, highly-uniform MoSe2 nanoparticles are successfully synthesized via a one-pot hydrothermal method with addition of polyvinyl pyrrolidone (PVP) following by calcination treatment. PVP serves as a surfactant preventing the over-agglomeration of MoSe2 nanosheets and contributing to the well-organized accumulation of MoSe2 nanosheets into nanoparticles. When evaluated as anode for lithium ion batteries, the MoSe2 nanoparticles show enhanced cycle stability and rate performance comparing to the MoSe2 bulk prepared without addition of PVP. After 200 cycles, the MoSe2 nanoparticles remain a specific capacity of 573.9 mAh g−1 at a rate of 200 mA g−1. Meanwhile, MoSe2 nanoparticles also display good sodium storage performance. Under the current density of 500 mA g−1, MoSe2 nanoparticles exhibit reversible capacity of 374.9 mA h g−1 after 100 cycles.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.