Abstract
Hydrogenation-dechlorination to produce 2,3-dichloropyridine is important for the next-generation pesticides. In this work, we successfully synthesized porous carbon nanospheres supported CuPd alloy nanoparticles via a simple and efficient one-pot strategy. Furthermore, by adjusting the Cu/Pd ratio and carbonization temperature, the obtained Cu2Pd1@PCNs-500-H2O2 showed the highly catalytic activity for the hydrogenation-dechlorination of 2,3,6-trichloropyridine with a conversion rate of 70.1 % and selectivity of 71.2 %. The catalyst showed outstanding catalysis performance even after five cycles. This simple and rapid one-pot strategy provides a new approach for the large-scale synthesis of efficient heterogeneous catalysts and offers an effective solution for reducing the high costs associated with precious metals.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.