Abstract

Embedded silver nanoparticles (Ag NPs) within nanofibers represent a highly promising alternative to common antimicrobial materials, due to the combined effective biocidal properties of Ag NPs with the biocompatibility and environmental friendliness of biobased polymers. In this study, we presented a novel one-step route to fabricate biobased polyamide 56 (PA56) nanofibers embedded with uniform Ag NPs. The process involved mixing reactive silver ammonia with PA56 solutions and then using formic acid as a reducing agent. Continuous electrospinning resulted in solvent evaporation, yielding Ag NPs highly dispersed within PA56 nanonet fibrous structures (PA56/Ag). Characterization assays confirmed the successful impregnation of Ag NPs in PA56 nanofibers, with an average size of about 32.4 nm. PA56/Ag nanofibers also displayed suitable morphology, mechanical properties, and good biocompatibility in vitro. Moreover, their antimicrobial effectiveness was evaluated against Staphylococcus aureus and Escherichia coli. Collectively, the proposed PA56/Ag nanofibers possess desirable characteristics suitable for antimicrobial applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call