Abstract

Silver nanoparticles (Ag NPs) were produced on cotton fibers by reduction of [Ag(NH3)2]+ complex with glucose. Further modification of the fibers coated by Ag NPs with hexadecyltrimethoxysilane led to superhydrophobic cotton textiles. Scanning electron microscopy images of the textiles showed that the treated fibers were covered with uniform Ag NPs, which generate a dual-size roughness on the textiles favouring the formation of superhydrophobic surfaces, and the Ag NPs formed dense coating around the fibers rendering the intrinsic insulating cotton textiles conductive. Antibacterial test showed that the as-fabricated textiles had high antibacterial activity against the gram-negative bacteria, Escherichia coli. These multifunctional textiles might find applications in biomedical electronic devices.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call