Abstract

To resourcefully utilize algal biomass and effectively remove bisphenol A (BPA) from water, sodium alginate (SA) was prepared as the nitrogen-doped magnetic porous carbon material (SAC/N/Fe) with well-developed pore structure according to a one-step method using K2CO3, melamine, Fe(NO3)3·9H2O as the activator, nitrogen dopant, and magnetic precursor, respectively, in this study. The best product, SAC/N/Fe-0.2, was obtained by adjusting the mass ratio of raw materials, and its specific surface area and pore volume were 2240.65 m2g-1 and 1.44 cm3g-1, respectively, with a maximum adsorption capacity of 1248.23mgg-1 for BPA at 308K. SEM, XRD, XPS, VSM, and FT-IR characterization confirmed that the iron was successfully doped, giving the porous carbon a magnetic separation function. The adsorption process of BPA was more consistent with the Langmuir model and the proposed secondary kinetics, and the adsorption effect was stable and efficient in a wide pH range and under the interference of different metal ions. At the same time, the porous carbon was easy to separate and recover with good regeneration performance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call