Abstract
In this work, nitrogen-doped magnetic porous carbon material (N-MPC) was prepared through the high-temperature calcination of low-cost [Fe(CN)6]3--loaded anion-exchange resin, which was experimentally demonstrated to have significant adsorption performance for tetracycline (TC) in water. The N-MPC adsorbent with a large specific surface area (781.1 m2 g-1) was able to maintain excellent performance in a wide pH range from 4 to 10 or in high ionic strength solution. The adsorption of TC on N-MPC was found to be more consistent with the pseudo-second-order model and Langmuir adsorption model, and the maximum adsorption capacity (qm, cal) was calculated to be 603.4mg g-1. As a recoverable magnetic adsorbent, the N-MPC remained a TC removal rate higher than 70% after four adsorption cycles. The adsorption mechanism was speculated on the basis of characterizations, where pore filling, hydrogen bonding interaction, and π-π electron donor-acceptor (EDA) interaction were crucial adsorption mechanisms. A variety of antibiotics were selected for adsorption, and excellent performance was found especially for TCs, indicating that the N-MPC can be used for the efficient removal of TCs from water.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Environmental science and pollution research international
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.