Abstract

An effective method was proposed for constructing carbon dots (CDs)-sensitized multijunction composite photoelectrodes via one-step cladding a CDs-embedded ZnO amorphous overlayer on vertically aligned metal oxide nanowires. This strategy involved the double role of hexamethylenetetramine (HMTA) in the ethylene glycol (EG) solvent mixed with a controllable trace amount of water. In the water-deficient synthetic system, a limited portion of HMTA served as the pH buffer and hydroxyl source to force the hydrolytic process of zinc ions for the production of ZnO. The precipitated ZnO clusters were instantly capped by EG molecules through the activated alkoxidation reaction, and further crosslinked into an amorphous network surrounding the individual nanowires. Meanwhile, the excess HMTA was simultaneously depleted as the precursor for producing CDs in the EG solution through thermal condensation, which were packed in the gradually formed aggregates. We revealed that a CDs-embedded amorphous ZnO overlayer with an appropriate proportion of ingredient could be tailored through an optimal tradeoff between hydrolysis and condensation of HMTA. Benefiting from the synergy of the amorphous ZnO layer and the embedded CDs, the multijunction composite photoanodes exhibited significantly improved PEC performance and stability for water oxidation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.