Abstract

Vapor adsorption is an important process influencing the migration and the fates of many organic pollutants in the environment. In this study, adsorption of ethylene glycol (EG) vapor onto single crystal alpha-Al2O3 (0001) and fused SiO2 (amorphous) surfaces was studied with sum frequency generation spectroscopy, a well-suited surface specific technique for probing interfacial phenomena atthe molecular scale. Air-aqueous EG solutions were also investigated to compare to the adsorption at the air-solid interface in the presence of water vapor. The gauche conformer of EG molecules dominates the air-aqueous EG solution interface, and EG molecules act as hydrogen acceptors at the air-liquid interface. Water and surface hydrophilic/ hydrophobic properties play important roles for the adsorption of EG onto silica and alumina surfaces. The adsorbed EG molecules interact in different ways at the two different oxide surfaces. EG molecules weakly physisorb onto the alpha-Al2O3 (0001) surface by forming relatively weak hydrogen bonds with surface water molecules. On the silica surface, the suppression of the silanol OH stretching peak indicates that EG molecules form hydrogen bonds with silanol OH groups.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.